
      

        

STAT C-202   ALGEBRA 

 

  



Algebra (202) 
 

 

 

1.  Solve the equation 3𝑥4 − 40𝑥3 + 130𝑥2 − 120𝑥 + 27 = 0 given that the product of two of its roots is 

equal to the product of the other two. 

2. Solve the equation 

3𝑥4 − 8𝑥3 + 21 𝑥2 − 20𝑥 + 5 = 0 
given that the sum of two of its roots is equal to the sum of the other two. 

3. (a)Solve the equation x3 – 5x2 – 16x + 80 = 0, the sum of two of its roots being zero. 

(b)Solve the equation 2x
3 
 x

2 
 22x  24  0 two of the roots being in the ratio of 3 :4. 

 

4. Solve the equation 
x4-12x3+49x2-78x+40 = 0 by removing its second term. 

 
5. If α, β, γ are the roots of the equation x3 -6x2+11x-6 = 0 form an equation 

whose roots are β2+ γ2, γ2+α2, α2+β2 . 

6. (a) If α, β, γ be the roots ( all non zeros) of the equation x3 – px2 + qx – r = 0 find the value 

of (i) ( β + γ )( γ + α )( α + β ), (ii) ∑( α / β ) 

(b) Form a cubic whose roots are the values of , ,  given by the relations 

∑ 𝛼 = 3, ∑ 𝛼2 = 5, ∑ 𝛼3 = 11. Hence find the value of ∑ 𝛼4. 
 

7..  If ,,  are the roots of the cubic 𝑥3 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 form the equation 

whose roots are 
𝛼 

 

 

𝛽+𝛾−𝛼 
, 

𝛽 

𝛾+𝛼−𝛽 
, 

𝛾 
. 

𝛼+𝛽−𝛾 
 

8. Solve the equation 𝑥3 + 6𝑥2 + 12𝑥 − 19 = 0 by removing its second term. 

 

9. (i) Find the sum of the fifth powers of 𝛼, 𝛽, 𝛾 – the roots of the equation 

𝑥3 − 𝑥 + 1 = 0. 

(ii) Find the sum of the  reciprocals  of  the  fifth  powers  of  𝛼, 𝛽, 𝛾  –  the  roots  of  the  

equations𝑥3 + 2𝑥2 + 1 = 0. 

10. Show that a skew-symmetric determinant of order 4 is the square of the polynomial 

function of its elements. 
 

11. Express 

2𝑏𝑐 − 𝑎2 𝑐2 𝑏2 
| 𝑐2 2𝑎𝑐 − 𝑏2 𝑎2 | 

𝑏2 𝑎2 2𝑎𝑏 − 𝑐2 
as the square of a determinant and hence find its value. If the value of the given determinant is zero, then 

prove that 𝑎3 + 𝑏3 + 𝑐3 = 3𝑎𝑏𝑐. 
12. Express 

(1 + 𝑎𝑥)2 (1 + 𝑎𝑦)2 (1 + 𝑎𝑧)2 

|(1 + 𝑏𝑥)2 (1 + 𝑏𝑦)2 (1 + 𝑏𝑧)2|. 

(1 + 𝑐𝑥)2 (1 + 𝑐𝑦)2 (1 + 𝑐𝑧)2 
as product of two determinants and hence evaluate it. 

 

13. When is a rectangular matrix said to be in reduced echelon form? Transform the 

following matrices into reduced echelon form and circle the pivot positions in the final matrix: 



 
0 0 



1 2 3 4 2 1 0 5 
A=[4 5 6 7]. 𝐵 = |3 2 7 9| 

6 7 8 9 1 4 9 3 
 

14. When is a matrix said to be in 

(i) Echelon form, 

(ii) Reduced echelon form? 

 
15.(a) Show that the system of simultaneous equations 

x-y+2z = 4 

3x+y+4z = 6 

x +y+z = 1 are consistent and hence solve them. 

(b) For what values of 𝜆 the equations 
x+y+z=1 

x+2y+4z=λ 
x+4y+10z=λ2, have a solution and solve the equations 

 

16. Investigate for which values of 𝜃 and the system of equations 

𝑥 + 2𝑦 + 3𝑧 = 5, 
3𝑥 − 𝑦 + 2𝑧  = 1, 
3𝑥 − 𝑦 + 𝜃𝑧  = 𝜇 

will have 
(i) No solution, 

(ii) A unique solution, 

(iii) An infinite number of solutions. 

 

17. Solve with the help of Cramer’s rule 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧  = 𝑘, 
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑘2, 
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑦 = 𝑘3. 

 

18. Define a circulant determinant. Show that  
𝑎 𝑏 𝑐 𝑑 

|𝑑 𝑎 𝑏 𝑐 | 
𝑐 𝑑 𝑎 𝑏 
𝑏 𝑐 𝑑 𝑎 

has 𝑎 + 𝑏 + 𝑐2 + 𝑑3as a factor were  is a root of 𝑥4 = 1. Hence show that the 

determinant is equal to (𝑎 + 𝑏 + 𝑐 + 𝑑)(𝑎 − 𝑏 + 𝑐 − 𝑑){(𝑎 − 𝑐)2 + (𝑏 − 𝑑)2}. 
19. Solve 

 
 x-2 2x- 3 3x- 4  

∆ = x-4 
x-8 

2x- 9 
2x-27 

3x-16 
3x-64 

=0 

20.(a) Prove that a skew-symmetric determinant of odd order vanishes. 

 

(b) Find the area of the parallelogram whose vertices are 

(−2, −2), (0, 3), (4, −1), (6, 4) 

21.(a) If A  
 0 1 

 
prove that (aI  bA)

n  
 a

n 
I  na

n1
bA where I is the 2 rowed unit matrix, n is 



 

1 

 

0 0 

a positive integer and a , b are arbitrary scalars. 
 

(b) Show that the possible square roots of the two rowed unit matrix I are 

±I and (
  

) where, 1 − 𝛼2 = 𝛽𝛾. 
− 

22. (a) If B, C are n x n matrices and if A = B + C then prove that  
 

          AP+1
 = BP

 [ B + (P+1)C] provided B and C commute,  
 

          C2
 = 0 and P is a positive integer.  

 

(b) If A is a symmetric and B is a skew-symmetric matrix, both of order n such that 

(A+B) is non singular and C = ( A + B )-1 . ( A – B ), then prove that 
(a) C'( A + B ) C = A + B 

(b) C'( A – B ) C = A – B 

(c) C'AC = A 

23. Define Orthogonal and Unitary matrices. If A is a square matrix and A  
1 

I 
2 

A  
1 

I 
2 

are orthogonal (I is an identity matrix of order same as A), prove that A is a skew 

symmetric and A2= - 
3
 

4 
I. Deduce that A is of even order. 

24.(a) If A and B are n-square matrices, then prove that adj(AB) =adj B.adj A 

(b) Find the value of adj(P-1 ) in terms of P where P is a non singular matrix & hence 

show that adj (Q-1B P-1)=PAQ given that adj B=A & |P|=|Q|=1 
 

25.  Let e be the column vector with elements (1,1,….,1) & e/ its transposed row vector. Let 

A be n- square matrix & I the unit matrix .Let M(x) be given by M(x)= I + xAee / ,x is a 

scalar .Prove that M(x)M(y)=M(x+y+kxy) where K is the scalar e/ A e .Verify that 
reciprocal of M(x) is M(-x/(1+kx)). 

 

26. Prove that every Hermitian matrix H can be uniquely expressed as 𝑃 + 𝑖𝑄 where 𝑃 
and 𝑄 are real symmetric and real skew symmetric matrices respectively. Further, show that 𝐻𝜃𝐻 is  

real iff 𝑃𝑄 = −𝑄𝑃. 

cos


27. If F (α)=  sin 

- sin 

cos

0


0; 
 
 

 cos 


0 sin  


G (β)=  0 1 0  Show that the 

- sin  0 cos  

inverse of the matrix F (α) G (β) is G (-β) F ( G (-β) F (-α). 

 
28. For every real number x such that -1<x<1, let A(x) be the matrix defined as 

𝐴(𝑥) = (1 − 𝑥2)−1/2 (  
1 −𝑥

) 
−𝑥 1 

Show that 

𝐴(𝑥)𝐴(𝑦) = 𝐴(𝑧), where 𝑧 = 
𝑥+𝑦

 
1+𝑥𝑦 

Deduce that [𝐴(𝑥)]−1 = 𝐴(−𝑥). 
29. (a) Define elementary matrices. Show that elementary matrices are non-singular. 

Obtain their inverses. 



R

2 −1 3 
(b)  Express A=[1 1 1]as a product ofelementary matrices. 

1 −1 1 
 

30. Define the rank of a given matrix. Prove that the rank of the product of two matrices 

can not exceed the rank of either matrix. 

31 Obtain the rank of the following matrix 

1
2
 


2

2 

22 32 

32 42 

4
2 

5
2 

 

32 

4

2 42 52 

52 62 

62 

7
2 

 



32. If no two of a,b,c are equal and no two of p, q, r are equal, show that the matrix 

 

 

is of rank 3. 

33. If a, b and c are all unequal, find using only row operations, the rank of the matrix 

 
Type equation here. 

 

34. Let A be an nxn nonsingular matrix. Compute the inverse of A by method of 

 I 
partitioning and hence obtain the inverse of 


the identity sub matrix. 

 

35. Compute the inverse of partitioned matrix 

A = (
𝐴11 𝐴12) of order n × n, 
𝐴21 𝐴22 

assuming 𝐴22 is a nonsingular sub matrix of 

order  s×s . 
 

36. Compute the inverse of Partitioned matrix 

A  =[
𝐵 0

] where B is n x n , D is 1 x n , 
𝐷 1 

Q 
where R-1 exists and is known. I is 



0 is n x 1, 1 s 1 x 1 

 

37. Given the existence of all necessary inverses, show that inverse of 
𝐼 𝑃 (𝐼 − 𝑃𝑄)−1 −(𝐼 − 𝑃𝑄)−1𝑃 

[
𝑄 𝐼 

] =  [
−𝑄(𝐼 − 𝑃𝑄)−1 𝐼 + 𝑄(𝐼 − 𝑃𝑄)−1𝑃

]
 

38. Find 𝑋𝐺𝑋′, where G is a generalized inverse of 𝑋′𝑋 
 

(a) Let 
1 

𝑋 = (1 
−1 
−1 

−2 
−2) 

 1 −1 −2 

 1 2 3  

(b) Let 𝑋 = (1 2 3) . 
 1 2 3  

O 

1 𝑎 𝑝 𝑎𝑝 

𝐴 = (1 𝑏 𝑞 𝑏𝑞) 
1 𝑐 𝑟 𝑐𝑟 

 

0 𝑏 − 𝑎 𝑐 − 𝑎 𝑏 + 𝑐 
𝑎 − 𝑏 0 𝑐 − 𝑏 𝑐 + 𝑎 
𝑎 − 𝑐 𝑏 − 𝑐 0 𝑎 + 𝑏 
𝑏 + 𝑐 𝑐 + 𝑎 𝑎 + 𝑏 0 

 



0 

2 3 



39. Discuss the algorithm for finding a generalized inverse of a given matrix. How will you 

find a symmetric generalized inverse for a symmetric matrix of order n. 

40. Prove, when G is generalized inverse of 𝑋′𝑋, that 

(i) 𝐺′is also generalized inverse of 𝑋′𝑋, 

(ii)𝑋𝐺𝑋′𝑋 = 𝑋, 

(iii) 𝑋𝐺𝑋’ is invariant of G., 

(iv) 𝑋𝐺𝑋’ is symmetric whether G is or not. 

41.(a) If the characteristic roots of A are1, 2, … , 𝑛, then show that characteristic roots 
of 𝐴2 are 2, 2, … , 2 . Further, if A is an idempotent matrix, show that its roots are 

1 2 𝑛 

zero or unity. 
(b) Prove that the modulus of each characteristic root of a unitary matrix is unity. 

42.  If the characteristic equation of 3x3 matrix A be  3 – p  2 +q  + r = 0 prove that the 

characteristic equation of adj A is  3 – q  2 -rp  - r2 = 0 

43 Prove that the characteristic roots of a square matrix A of order 3 are same as that of 

any of its transformed matrix, PAP-1 where P is any non-singular matrix of order 3. Also if 
0 1 1 𝑏 + 𝑐 𝑐 − 𝑎 𝑏 − 𝑎 

2 

Determine the characteristic roots of the matrix A. 

44. Prove that any two characteristic vectors corresponding to two distinct characteristic 

roots of a Hermitian matrix are orthogonal 
45.(a) Find the characteristic roots of the matrix 

6 −2 2 
A =  (−2 −3 −1) 

2 −1 3 
and show that the characteristic vectors associated with its distinct characteristic 
roots are mutually orthogonal. 

0 1 1 
(b)  Find the characteristic roots of the matrix  A=[1 0 1] and show that the 

1 1 0 
characteristic vectors associated with its distinct characteristic roots are mutually 
orthogonal. 

46. State Cayley-Hamilton theorem. Given𝐴 = (
2 −1

), express 𝐴4 − 4𝐴3 − 𝐴2 + 2𝐴 − 5𝐼 as a llinear 
1 3 

polynomial in A and hence evaluate it. 

47. The characteristic roots of a square matrix of order 3 are 1,-1 ,2. Express A6 as the 

quadratic polynomial in A. 
48. Compute 2A8-3A5+A4+A2-4I, where A is the matrix 

 1 


A =  0 



0 2


 1 1 

1 

49. Reduce the real quadratic form 3𝑥2 − 3𝑦2 − 5𝑧2 − 2𝑥𝑦 − 6𝑦𝑧 − 6𝑧𝑥 to its 

canonical form and find its rank, signature and index. 
 

50. Identify the nature of the quadratic forms 
(a) 21x2 11x2  2x2  30x x  8x x 12x x 

1 2 3 1   2 2   3 3 1 
(b) x 2+6x 2+18x 2+4x x +8x x -4x x 

1 2 3 1  2 1   3 2 3 

(c) 4x2 + 9y2 + 2z2 + 8yz + 6zx + 6xy 
(d) 𝑥2 + 6𝑥2 + 18𝑥2 + 4𝑥1𝑥2 + 8𝑥1𝑥3 + 4𝑥2𝑥3 

1 2 3 

(e) 6x1
2+ 3x 2+14x 2+4x2x3+18x3x1+4x1x2 

0 

P=(1 0 1); A=1 (𝑐 − 𝑏 𝑐 + 𝑎 𝑎 − 𝑏) 
1 1 0  𝑏 − 𝑐 𝑎 − 𝑐 𝑎 + 𝑏 

 



and hence find the rank, index and signature of the form. 
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